ALD for Fuel Cells & Lithium Ion Batteries

Publication Review on Savannah and Fiji Systems
Highlights

- Fully optimized recipes (wafer scale) for Li (Li$_2$O), Mn, Co, Ni, Fe, P binary oxides
- Multicomponent oxide recipe available for cathode and electrolyte
- Carbon-free Li$_2$O (<0.1%) chemistry
- First ever reported quaternary oxide (LiFePO$_4$)
- Demonstrated multicomponent Li oxide in 300:1 aspect ratio (Expo mode)
- Glovebox integration for Savannah and Fiji
- In-situ QCM to characterize composition of multicomponent oxides
- Low Vapor Pressure Delivery (LVPD) available for wafer-scale uniformity and run-to-run reproducibility
- Most published Li-based work on Ultratech tools
Lithium ion battery

- Slow Li ion motion in and out of storage electrode
- Long transport path for electrons and ions
- Insufficient interfacial surface
- Extra weight (binder, separator, electrolyte)
- Battery degradation over time
- Safety concerns

Benefits of 3D microbatteries

• Higher power density due to short diffusion path
• Higher charge/discharge rates from higher surface/volume ratio
• Improved cycle life due to minimization of mech. stress and ALD passivation
• Active ion storage materials for electrodes (anode and cathode)
• Safe and not flammable: Solid Electrolyte

Huge potential for MEMS due to small form factor, low weight, high energy density
Li$_2$O / MnO$_x$ / Li$_2$MnO$_4$

- Depositions at low precursor temperatures to limit thermal decomposition
- In-situ characterization of process space for LiOtBu and Mn(EtCp)$_2$ chemistries with water and ozone
- Saturation curves
- Dehydroxylation of LiOtBu/H$_2$O films
- Optimized deposition of Li$_2$O and MnO$_x$ nanolaminates films
- Determined conditions for growth of MnO$_x$ on lithium based oxides.
- Controlled stoichiometry via Li$_2$O: MnO$_x$ cycle ratio
- SIMS confirmed QCM-based Li:Mn ratio and low % contamination
Real-time, in-situ sensing
Spectroscopic ellipsometry
Downstream mass spec

ALD (thermal, plasma, ozone)
MnO₂, Al₂O₃, TiO₂, TiN, AlN, & combinations

ALD Nanostructure Lab UMD

Surface analysis
Kratos Ultra DLD
Mono-XPS, mapping/imaging (3-15μ)
SEM, scanning Auger (100-200nm)
Depth profiling (Ar, coronene)
UPS, ISS
Carbon free Li$_2$O

- Depositions in Fiji F200 with LiOtBu, H$_2$O and O$_2$ gas (PEALD)
- In-situ characterization with XPS
- LiOtBu / H$_2$O
 - LiOH at $T < 240^\circ$C
 - Li$_2$O at $T > 240^\circ$C
 - Carbon-free Li$_2$O
- LiOtBu / P$_{O_2}$ lead to Li$_2$CO$_3$
- Carbon contamination from CO$_2$ via insitu XPS study
- Insitu ellipsometry study of LiOH dehydration vs temp.

Lithium Tantalate Solid-state Electrolyte

Objectives
- Solid-state electrolyte for 3D microbattery
- Li ion conductivity (1E-5 – 1E-8 S/cm), low electron conductivity

Experimental
- Savannah S100 at 225°C, expo mode
- LiOtBu @170°C, Ta(OEt)5 (190°C) / H2O
- Final Aspect Ratio ~ 470

2E-8 S/cm Li+ conductivity in Li$_{5.1}$TaO$_z$ at 299K

Conformal deposition of Li$_{5.1}$TaO$_z$ in 300:1 AAO
LiPON Solid Electrolyte

- **Experimental**
 - FIJI F200 at 250°C
 - LiOtBu @165°C / H₂O /
 Trimethylphosphate / N₂ plasma
 - Deposited on carbon nanotube sponge scaffold

- **Results**
 - First reported LiPON ALD process
 - 1.45E-7 S/cm highest published conductivity by ALD
 - Low %C <1%

Sequence for LiPON ALD using TMP

Stoichiometry / crystallinity vs %N

Ionic conductivity vs. %N

CV for LiPON on Si and Cu

- **Experimental**
 - FIJI F200 at 250°C
 - LiOtBu @165°C / H₂O /
 - Trimethylphosphate / N₂ plasma
 - Deposited on carbon nanotube sponge scaffold

- **Results**
 - First reported LiPON ALD process
 - 1.45E-7 S/cm highest published conductivity by ALD
 - Low %C <1%
LiFePO$_4$ cathode

Objectives

- First quaternary oxide for battery reported
- Cathode materials for Li-ion battery
- High specific capacity, low cost, thermal stability, environmentally friendly
- Improve rate performance via nanostructuring

Experimental

- Savannah S100 at 300°C, expo mode
- Ferrocene FeCp$_2$ (130°C) /O$_3$, Trimethylphosphate TMPO (75°C) / H$_2$O and LiOtBu (180°C) / H$_2$O
- Deposited on Si and CNT

Conformal LiFePO$_4$ on carbon nanotubes

Battery performances using LiFePO$_4$ electrolyte
FePO₄ on LiNi₀.₅Mn₁.₅O₄ cathode

- **Achievement**
 - Ultrathin FePO₄ on LNMO powder
 - Electrochemically active barrier between electrolyte and LNMO
 - Improves capacity fading and LNMO capacity

- **Experimental**
 - FePO₄ at 300°C, Savannah S100 (FeCp₂/O₃, TMPO/H₂O)

FESEM & HRTEM of LMNO with 20 cy. FePO₄

Impact of n-cycles FePO₄ on LMNO electrochem. pp.
Cu$_2$S cathode for LIB

Cu$_2$S on SWCNT (100, 200, 400, 600 cycles)

Charge/discharge for first 3 cycles at 1000 mA/g

- **Objectives**
 - Cu$_2$S deposited on single wall carbon nanotubes

- **Experimental**
 - Savannah S200 at 135°C, expo mode
 - CuAMD (150°C) and 1% H$_2$S
 - SWCNT functionalized with 9min O$_3$

- **Results**
 - Core-shell SWCNT-n-Cu$_2$S exhibits high charge discharge/stability
 - high capacity (260mA/g)
 - >99% Coulombic efficiency
Xiao, B. *et al.* Unravelling the Role of Electrochemically Active FePO4 Coating by Atomic Layer Deposition for Increased High-Voltage Stability of LiNi0.5Mn1.5O4 Cathode Material. *Advanced Science* n/a–n/a (2015). doi:10.1002/advs.201500022

FUEL CELL
Y$_2$O$_3$ and YSZ

- **Experimental**
 - Savannah S200 at 200-350°C
 - Y(EtCp)$_2$ @120°C (LVPD) / TDMAZr / H$_2$O

- **Results**
 - 0.8Å/cycle GPC @ 220°C, 2.1 index, 0.8%
 Uniformity on 200mm
 - QCM metrology shows good growth of Y$_2$O$_3$
 on ZrO$_2$
 - Composition control by ratio of
 Y$_2$O$_3$: ZrO$_2$ cycles
 - RBS characterization
 - Composition in agreement with ALD ratio and QCM data
 - Carbon contamination not detected
 - XPS and XRD characterization under way

QCM response during YSZ growth

GPC & index of Y$_2$O$_3$ vs temp.